a fixed temperature of 1300 °C at 120 km below the basement and a fixed 10 °C at the sediment surface provide the boundary condition. In a typical basin with continued and varying deposition rate over 10's of million years, the temperature in the sediment column may be always in disequilibrium.

## Wednesday, January 13, 2010

### How Long Does a Sedimentation Induced Thermal Disequilibrium Last?

This figure shows how sedimentation rate affects heat flow. It is based on a simple 1D basin model, with a steady-state initial thermal condition. A shale (with typical shale properties assumed by basin modelers) layer is deposited between 100 and 99 million years ago followed by a hiatus till present day.

a fixed temperature of 1300 °C at 120 km below the basement and a fixed 10 °C at the sediment surface provide the boundary condition. In a typical basin with continued and varying deposition rate over 10's of million years, the temperature in the sediment column may be always in disequilibrium.

a fixed temperature of 1300 °C at 120 km below the basement and a fixed 10 °C at the sediment surface provide the boundary condition. In a typical basin with continued and varying deposition rate over 10's of million years, the temperature in the sediment column may be always in disequilibrium.

## Wednesday, January 6, 2010

### Two Types of Shale Gas?

Happy New Year!

It seems there are two types of shale gas:

Shale gas evaluation requires a comprehensive model that takes into account the following: (a) a burial and thermal history model to predict maturity and porosity; (b) the Langmuir sorption model to calculate the amount of sorption gas in the organic matter; and (c) a pvt model to calculate in situ free/compression gas and dissolved gas in the residual oil. In general, the behavior of such a model looks like the following:

It seems there are two types of shale gas:

**Type 1**: Shallow depth (few hundred to 2000m), sorption dominated, TOC critical (7 scf/ton for each 1% of TOC). Maturity important only to improve sorption capacity. May be biogenic origin or mixed origin. Mechanism and therefore estimation methods are similar to CBM.**Type 2**: Deep depth (>2000 m), compression (free) gas dominated, porosity critical (20 scf/t for each 1% porosity unit) TOC less important. High maturity very important not only to improve sorption capacity, generate the gas but to reduce liquid volume which reduces sorption and lowers relative permeability. Higher pressure improves scf/ton value for the same porosity.Shale gas evaluation requires a comprehensive model that takes into account the following: (a) a burial and thermal history model to predict maturity and porosity; (b) the Langmuir sorption model to calculate the amount of sorption gas in the organic matter; and (c) a pvt model to calculate in situ free/compression gas and dissolved gas in the residual oil. In general, the behavior of such a model looks like the following:

These curves are shale gas capacity based on 5% TOC and 1.8% VRo. The curves will also vary with pressure gradient, thermal gradient.

Subscribe to:
Posts (Atom)